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1E x ec u t i v e  S u mm a r y

E XECUTI V E SUMM A RY

Financial services providers that see an opportunity to reach financially excluded 
people in rural areas can use new technology to remotely gather and analyze data 
on potential customers.

High-quality satellite data are becoming increasingly available. By leveraging 
advances in machine learning—the ability of computers to analyze data quickly 
and at scale—providers can gain valuable insights into customers’ economic, 
environmental, and demographic characteristics. This guide explains foundational 
concepts of machine learning and how financial services providers can apply those 
methods to leverage information contained in satellite images for the purpose of 
credit scoring.

This guide focuses on smallholder finance, but providers may find it useful for 
other applications as well, such as estimating local infrastructure, housing, and 
income levels; assessing the effectiveness of farming practices; crop insurance and 
risk calculations; and forecasting yields to combat food security problems.
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INTRODUC TION

T HIS GUIDE FOCUSES ON THE USE OF 
satellite imagery for credit scoring algorithms that 
facilitate smallholder farmer finance. Those inter-

ested in other applications of satellite imagery will also find 
the guide useful. The guide covers the basics of machine 
learning and highlights the knowledge, skills, tools, and 
data sources necessary when using satellite imagery in 
machine learning. 

The guide focuses on three types of organizations:

•	 Financial services providers (FSPs) that serve small-
holder farmers. These providers can use models based on 
satellite images to estimate relevant metrics, such as timing 
and value of yields, at a low marginal cost. 

•	 Non-FSP organizations that have smallholder farmers 
as customers. Other organizations in agricultural value 
chains—input providers, exporters, and traders—can use 
detailed information about type and density of crops or 
population to help them make decisions on products, yields, 
quality, or source locations. 

•	 Development organizations and public sector. 
Development organizations and public sector actors that see 
the potential of financial inclusion are increasingly interested 
in big data and analytics. Those in agriculture and agrifi-
nance are particularly interested in using satellite imagery. 

 

This guide strives to do the following: 

•	 Introduce remote sensing and its potential for financial 
inclusion and smallholder finance.

•	 Explain in simple terms how these methods work and clari-
fy both the abilities and limits of current techniques.

•	 Present use cases where computation techniques applied to 
satellite imagery can help organizations better serve small-
holder farmers.

•	 Equip organizations interested in exploring these methods 
with clear and actionable roadmaps that outline data  
prerequisites, problem scoping guidelines, and advice on 
getting started with research and development efforts.

Providers can use this guide as a tool to help them apply 
technologies, processes, and data analytics and machine-
learning methods to improve the delivery of financial 
services to low-income segments.
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SECTION 1

THE OPPORTUNIT Y 
IN REMOTE SENSING

1.1	 �What Is Remote Sensing?  
Why Does It Matter 
for Financial Inclusion?

The availability of data is increasing exponentially. 
Over the past 15 years, there has been a dramatic increase 
in the availability of high-resolution satellite imagery data 
from commercial providers. These images make it possible 
to follow events on the ground—from changing infrastruc-
ture to the availability of water resources—that can provide 
insight into economic, environmental, and demographic 
changes over time.

Better tools make it easier to apply advanced analytics 
techniques. Advances in machine learning paired with an 
increase in affordable computational and storage capabilities 
of machines and networks provide new ways to leverage 
data. Machines can analyze imagery data quickly and at 
scale and can learn from patterns. For example, convolu-
tional neural networks (CNNs) power applications like the 
auto-tagging of friends on Facebook or the computer-aided 
identification of irregular tissue in medical scans. Paired 
with the increased availability of high-frequency satellite 
images, these approaches help organizations learn about 
what is happening in remote locations in a scalable way.

Remote sensing can enable fast, affordable, effective, 
and scalable decision making. Remote sensing is the 
acquisition of information about an object or phenomenon 
without making physical contact with the object. It gen-
erally refers to the use of satellite sensor technologies to 
detect and classify objects on Earth. Satellite imagery allows 
organizations to make smart decisions at scale, while the 

use of traditional methods can be expensive, infeasible, and 
complicated. There are three important benefits of remote 
sensing when compared with other data collection options: 

•	 It is often cheaper

•	 It can often provide intelligence more quickly

•	 It can scale to enormous geographic areas much more effec-
tively—thus providing large time and cost savings benefits. 

Reducing the marginal costs of operation is key for finan-
cial inclusion. One of the big challenges of financial inclusion 
business models is the low revenue potential per customer. 
Therefore, low marginal costs are a key enabler of viable 
business models to serve the poor. The availability of digital 
channels has been a first step in lowering the costs of tradi-
tional operational models and expanding reach. However, once 
an in-person, one-on-one relationship is replaced by a digital 
one, organizations lose opportunities to know their customers. 
Remote sensing technology, although still nascent, has the 
potential to enable individualized decision making in an auto-
mated way by providing new customer-level data. 

Remote sensing technology has significant potential for 
organizations that work in financial inclusion, especially 
financial inclusion for smallholder farmers. Collecting data 
about farmers who are spread across remote areas is a slow and 
expensive process. Most smallholder farmers do not have formal 
financial information that can be used to assess their income 
flows or ability to repay. Remote sensing can help organi-
zations that serve rural segments (e.g., agricultural services, 
microfinance institutions, off-grid energy providers) to collect 
and analyze data and better assess opportunities and risks in a 
scalable way.
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1.2	 �Areas Where These Methods  
Can be Applied

The following use cases illustrate the potential for satellite 
imagery and machine learning to impact development.

Alternative credit scoring. Low-income people in general, 
and rural populations in particular, often do not have tradi-
tional credit histories and financial records, which makes it 
difficult for FSPs to assess their creditworthiness and to lend 
to them. Satellite images can provide an estimate of past and 
future agriculture income as well as the timing and sources of 
this income, and thus, they can provide key inputs to credit 
assessments.

Estimating local infrastructure, housing, and income 
levels. Reliable estimates of local infrastructure, housing, and 
income levels can help development organizations identify gaps 
and needs for investment and can help private-sector players 
identify markets and opportunities. Satellite data can enable 
assessment of large areas, effective comparisons across locations, 
and tracking of changes and evolution in a cost-effective way.

Assessing the effectiveness of farming practices (including 
inputs, methods, and crops). Satellite images can enable 
automated assessment and guidance on farming practices 
at a minimal marginal cost. This may be particularly 
beneficial to subsistence farmers who lack access to formal 
training or advisers.

Calculating crop insurance and risk. Insurance can smooth 
income and provide resilience against shocks, which is particu-
larly important for low-income people who have limited assets 
and savings. Remote sensing has the potential to automate 
insurance claim evaluation, which would significantly reduce 
marginal cost and enable business models for microinsurance.

Forecasting yields to combat food security problems. Food 
security is a major challenge for many developing countries 
that have large population segments that depend on rainfall 
agriculture. This is exasperated by uncertainties stemming 
from climate change and the lack of early detection of low 
yields, which limits the ability of governments and other 
organizations to mitigate shortages. Remote sensing can pro-
vide automated high-frequency yield estimates to maximize 
their ability to react and address potential food shortages. 

Although many of these use cases are new or experimental, 
they are becoming increasingly accessible as technology 
becomes cheaper and more widespread. 

Data science. A broad term that encompasses 

collecting, storing, processing, analyzing, and 

communicating data. In this paper, “data science” also 

refers to machine learning and statistical modeling.

Deep learning (also known as deep structured 

learning or hierarchical learning). This is part of a 

broader family of machine-learning methods based 

on learning data representations, as opposed to 

task-specific algorithms. Among deep-learning 

methods, convolutional neural networks (CNNs) are the 

most common approach used for image recognition. 

GIS (geographic information systems). A system 

of tools that are used to store, process, analyze, and 

map geographic data. These systems are complex, and 

specially trained experts are needed to run them. 

Machine learning. This term refers to using data 

to “give computers the ability to learn without being 

explicitly programmed.” Much of machine learning 

relies on statistical models or other algorithms used to 

generate results from information found in data rather 

than in predefined explicit rules.

Prediction. Making inferences about unknown 

information based on data inputs. When we talk about 

predictions, we are not necessarily talking about the 

future. For example, a model can try to predict crop 

yields in the upcoming year or it can try to predict 

whether a given image is of a cat or of a dog.

Satellite imagery. Data collected from satellite-

mounted sensors of different light spectra as they 

circle the Earth. These can simply be images at visible 

light, but they may also include images resulting from 

nonvisible wavelengths (such as infrared or ultraviolet) 

detected by specialized sensors.

Statistical model. Refers to an algorithm that 

translates input data—in this paper, this is usually 

satellite imagery—to a predicted result of interest. The 

models discussed in this paper are generated using 

machine-learning techniques, but statistical models can 

be generated using a variety of econometric techniques.

BOX 1. Key terms
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SECTION 2

DE V ELOPING YOUR REMOTE  
SENSING CA PA BILITIES

2.1	 What Is Machine Learning?
Machine learning has been around since the early 20th 
century, and it has become increasingly relevant as advances 
in technology reduce the cost of the computational and 
storage capacity of computers. Traditional applications are 
set up by defining explicit rules: “if X, then Y.” For example, 
you can tell a computer how to play tic-tac-toe (noughts 
and crosses) by defining rules for all possible scenarios: “If 
you selected top-right and player B selected top-center you 
should select middle-center next.” For a simple game with 
a limited set of possible moves like tic-tac-toe, defining 
explicit rules is relatively easy to do. However, in some cases 
(e.g., a more complex game like chess), it is difficult, time 
consuming, and/ or expensive to write out all the rules for 
every situation. You may not know what the rules are ahead 
of time—for example, you may have data about what hap-
pened in a given situation and what the outcome was, but 
you may not know the steps of “if X, then Y” that produced 
the outcome. In this case, you want the computer to learn 
those rules by examining many examples or data. In the 
tic-tac-toe example, you would provide the computer a data 
set of several tic-tac-toe games that contains the sequence 
of selections of each player and the outcome: Player A wins, 
Draw, or Player B wins. The computer can use that infor-
mation to learn how to play in a way that maximizes its 
chances of winning. This is called machine learning.

Linear regression, a standard econometrics technique used 
for modeling, is a simple example of machine learning 
(although the term is most often used to refer to more com-
plex examples). Given two points, you can unequivocally 

determine the straight line that best fits them: the line that 
passes though both points. However, the procedure of “fit-
ting” or “training” this line becomes increasingly complex 
as the number of points increases and you need to make 
trade-offs between being closer to one or to another. 

Once you have a “fitted” or “trained” model, you can use 
that model to make predictions. The trained model is a for-
mula that, for any combination of inputs, provides the most 
likely outcome, even if it was never trained on this exact 
combination of inputs. (See Figure 1.)

FIGURE 1. �An example of fitting training data

y1

y

  Training data	   Model	 y1  Prediction

x1 x

D E V E L O P IN G Y O UR  R E M O T E S E N S IN G CAPA   B IL I T I E S
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The two basic procedures of machine learning are training 
a model and using that trained model to make predictions. 
Models can also be retrained to incorporate new data and 
improve predictions. This type of computation can be done 
in seconds by any basic computer, so the term “machine 
learning” tends to be used for more complex estimations 
involving unstructured data. For example, looking at crop 
yield, you can train a model that takes satellite images as 
inputs and generates a prediction of the crop yield of the 
fields in the photographs. The model can be fine-tuned with 
other data such as weather forecasts.

2.2	 Technical Capabilities
Data science is an inherently cross-functional and interdis-
ciplinary field, where projects ordinarily cut across many 
parts of the business, both technically and operationally. 
Successfully combining technical and operational knowl-
edge—either by finding people with expertise in both or 
more commonly by achieving effective collaboration in a 
multidisciplinary team—is often the biggest challenge for 
organizations that want to use advanced analytics. 

F U N C T I O N A L  R O L E S
Functional roles define capabilities and functions rather 
than titles and people. A single person may have one or 
more roles depending on his or her expertise and the size of 
the operation.

•	 Data scientist with deep learning experience.1 The core 
skill set for any satellite imagery machine-learning project is 
the ability to obtain, clean, and analyze very large hetero-
geneous data sets. This involves both quantitative and 
programming skills, including familiarity with data tools 
and software. At a minimum, this requires the following:

•	 Strong knowledge of statistics, applied math, and 
computer science, usually with a masters (or higher) 
degree in a quantitative discipline.

•	 Mastery of at least one programming language common-
ly used for data work. Prevailing languages used by data 
scientists are Python and R (R Development Core Team 

1	 Because this role involves several technical skill sets that intersect several fields, it can be difficult to find qualified data scientists, and it can be expensive 
to bring them on as full-time employees—see “Building Capacity vs. Outsourcing,” later in this section for advice on getting started without full-time 
data scientists.

2	 Python Software Foundation, “Python Language Reference,” http://www.python.org. 

3	 Some other data analysis languages such as SPSS, SAS, and MATLAB are not as effective and flexible when working with satellite imagery.

4	 Computer vision is an interdisciplinary field that uses computers to gain high-level understanding from digital images or videos. 

2008).2 Both of these languages are good options for 
modeling with satellite images.3

•	 Experience with deep-learning methods (preferable 
computer vision approaches used for image analyses 
like CNN). 

•	 Experience with computer vision principles or projects,4 
where image data are analyzed using CNNs or other 
relevant approaches.

•	 GIS practitioner. Like data scientists, GIS practitioners 
specialize in cleaning, synthesizing, and analyzing varied 
data sets. They are experts in and focus mainly on geospa-
tial data analysis. They generally do not need advanced 
mathematical backgrounds, and while many are able to 
script and automate certain aspects, they often use desktop 
environments such as ArcGIS, Mapinfo, or QGIS for their 
analyses rather than custom software.

•	 Data engineer. The data engineer has a traditional IT role 
that focuses on systems for storing and processing data. The 
work of the data engineer—sometimes called an infra-
structure engineer—overlaps with work in development 
operations. The data engineer decides how to develop and 
manage the systems infrastructure. The data engineer needs 
the following:

•	 An ability to strategize about “cloud” and “on premise” 
architectures. (See Section 4.1, IT Infrastructure for 
Machine Learning.)

•	 Experience with storing and processing images and 
geospatial data, both of which have specialized 
database technologies.

•	 Experience using application programming interfaces  
(APIs) to extract data and metadata from satellite 
providers.

•	 Experience scaling systems to handle massive amounts 
of information (in the terabytes) of input data.

•	 Business expert. The business expert is a project manag-
er who understands the business use case and is familiar 
with the “ground truth” data (see Section 3, The Data). 
The expert works closely with the data scientist to resolve 
questions about patterns in the data. Importantly, the expert 

http://www.python.org
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understands the area depicted in the satellite images and 
knows which patterns are expected and which are unusual. 
The expert understands the business case for using satellite 
imagery and machine learning. The business expert needs the 
following:

•	 Domain expertise and knowledge of the business use case.

•	 Understanding of the “ground truth” data that are being 
modeled. For example, how are the data collected? What 
are the anomalies? Where are the missing data? What do 
individual columns in the data set mean?

•	 Ability to communicate across different functions and 
share progress, questions, and successes.

•	 Senior owner or “champion.” Machine-learning projects 
are, at their core, research and development projects.  
A senior-level project owner will ensure that expectations 
around the work are set properly and will demonstrate 
that an organization understands the long-term buy-in 
that is necessary for success. The senior owner or champi-
on needs to:

•	 Support the project as a research and development  
effort that uses cutting-edge technology to solve 
business problems.

•	 Have a firm grasp on the domain and understand what 
the application of the system will be—in particular, how 
the system will improve the business and its operations.

•	 Ideally, have a technical background.

Even projects with brilliant technical staff may fail if staff 
cannot rely on a subject matter expert to keep the focus on 
issues that matter to commercial and other stakeholders 
and to keep assumptions realistic. Similarly, a cutting-edge 
research and development project that achieves impressive 
numerical results but cannot feasibly be run on the organi-
zation’s existing IT infrastructure will not be adopted and 
used. Even successful and objectively high-quality technical 
efforts tend to flounder in larger organizations without a 
senior project leader acting as a champion and helping to 
break down barriers between disparate business units.

B U I L D I N G  C A PA C I T Y  V S .  O U T S O U R C I N G
Should you build machine-learning models with satellite 
imagery in-house or should you outsource this effort? Your 
answer depends on many aspects, including whether you 
have the expertise required in-house, what your project 
goals are, the scope of your budget, your timing require-
ments, and your long-term strategy.

Will machine-learning capabilities strengthen your position 
in the marketplace? If yes, do you have or can you find, 
attract, and support the right person to lead this effort? 
This person needs to understand the business as well as how 
machine learning can address business needs. The lead will 
need to work in a dynamic environment and invest resources 
in areas that have the most potential for success. However, 
even well-informed decisions do not guarantee success. 

If you do not have the necessary conditions in-house, 
you may want to outsource the work. Outsourcing often 
means getting results faster and having lower risks because 
you would not need to take the time to train in-house 
specialists. This is especially valuable at the research and 
development phase, where future investments are often 
based on the results of initial experiments. By outsourcing 
this work, your organization can more effectively manage 
timelines, prices, and goals by negotiating these upfront 
with the contractor.

If you decide to outsource the work, you should clearly 
define the success (and failure) criteria of the project. 
Machine learning is about experimenting with data and 
methods, and not every experiment will work. Learning 
why something did not work often can be as valuable as cre-
ating a working model. This caveat should be acknowledged 
when assessing the value of machine learning. Creating 
models with extremely high accuracy involves an iterative 
approach and learning from both successes and failures.



8U S IN G S AT E L L I T E D ATA IN  F IN A N C I A L IN C L U S I O N

Each step should be built on a solid foundation—this is 
referred to as the Data Science Hierarchy of Needs (after 
Maslow’s Hierarchy of Needs, see Figure 2). When out-
sourcing a machine-learning project (or defining one 
in-house), you should review the Data Science Hierarchy 
of Needs with the contractor and have a frank discussion 
about the effort required at each level. The more informa-
tion the contractor has, the more likely it is that together 
you can scope a successful project.

In most cases, an investment in a machine-learning model 
is an investment in custom software. There are currently 
no off-the-shelf software providers that use state-of-the-art 
models and near-daily satellite data. Therefore, you will 
need to invest in custom software, keeping in mind the 
need for maintenance, improvements, support, and integra-
tion of that software. 

Overall, the decision to build internal capacity or to out-
source comes down to your organization’s unique situation. 
Your organization must assess strategy, current capabilities, 
and the expected business benefits of this technology to 
determine the best path forward.

FIGURE 2. The data science hierarchy of needs

Learn/Optimize

Aggregate/Label

Explore/Transform

Move/Store

Collect

A/B Testing, Experimentation, 
Sample Machine  

Learning Algorithms

Analytics, Metrics, Segments, Aggregates, 
Features, Training Data

Cleaning, Anomaly Detection, Prep

Reliable Data Flow, Infrastructure, Pipelines, Extract/Transform/Load, 
Structured and Unstructured Data Storage

Instrumentation, Logging, Sensors, External Data, User Generated Content

Artificial  
Intelligence,  

Deep Learning

Source: Rogati, 2017. 
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SECTION 3

5	 Technically, this is a subfield of machine learning called “supervised learning.” Supervised learning is the focus of this paper, but there are also methods called 
“unsupervised learning.” These methods attempt to discover structure in data independent of a quantity of interest or variable you are looking to measure.

THE DATA

C OLLECTING DATA IS AT THE BASE OF 
the Data Science Hierarchy of Needs. One of the 
mantras of the data scientist is: “Garbage in, gar-

bage out.” Without accurate, timely, and relevant data you 
cannot build effective models. A plan for getting the right 
data, in the right format, and within a reasonable timeframe 
is critical.

In the case of remote sensing, data need to capture three 
essential features: what, when, and where. While critical for 
working with satellite data for smallholder farmers, these 
features are also relevant for many other types of image and 
remote sensing data. 

A data audit is an essential first step. In addition to ensuring 
that the necessary data are collected, you must make sure 
that data are of sufficient quality. The data scientist should 
provide those familiar with the data (the business expert, 
the data engineer, and others within the company as 

needed) with descriptive statistics for the different variables 
and identify any potential errors. Descriptive statistics may 
include means, medians, maximum and minimum values, 
distribution of data, and correlations between variables. 

3.1	 �Selecting a Target Variable  
to Model (What)

The machine-learning process creates a data-driven model that 
takes contextual information (such as satellite images) as inputs 
and produces predictions about another variable.5 For instance, 
a model may predict an estimate of crop yield, the rate of defor-
estation, the density of road traffic, or the total irrigated land. The 
key initial step is to produce a data set that has the variable to be 
predicted. This is called the “target variable.” You want your model 
to be a function that takes images as inputs and produces estimates 

FIGURE 3. Model development and application

Model Development

Image +  
Target Variable

Trained Model Image Model Predicted Target 
Variable

Model Application
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of this target variable. For example, to train an algorithm to predict 
yield based on an image, you need a data set that contains images 
and the yield associated to each of them. (See Figure 3.)

In the data set, this target variable will have a temporal com-
ponent (when it was measured) and a spatial component 
(where was it measured). Knowing when and where your 
measurements of the target variable comes from allows you to 
synchronize your target data with the available satellite imagery.

C L A S S  O F  M O D E L
Classification, regression, and segmentation are the three 
classes of machine-learning models that are relevant when 
working with satellite imagery. These classes have different 
kinds of target variables, but all can be modeled using satel-
lite imagery if there are enough examples of satellite imagery 
where the value of that target variable is known.

In a classification problem, there is a set of discrete catego-
ries to model. Figure 4 illustrates a simple example where 
a photograph needs to be classified as being of a cat, dog, 
mug, or hat. The kind of object in the picture is the target 
variable. The goal of classification is to identify which class 
(category) the image should be associated with. For satellite 
imagery, the algorithm might, for example, classify a satel-
lite image as “urban” or “rural.” 

In a regression problem, a continuous variable is modeled (as 
opposed to a discrete category). The algorithm will predict a 

specific value at a given time for this continuous variable. The 
target variable is usually a number representing the quantity 
of interest. For example, a regression model might predict 
future house prices, where house prices can have any dollar 
value—not just “cheap” or “expensive.” Some examples using 
satellite images include changes in the number of buildings 
in a suburb, expected crop yield from an area of farmland, or 
the percentage of the image covered in water.

In an image segmentation problem, areas of interest within an 
image must be identified. For example, an algorithm might 
draw bounding boxes around cultivated land in the image or 
it may identify areas that are bodies of water. Image seg-
mentation is closely related to object recognition. As Figure 
5 shows, for this kind of data, example images are needed 
where the objects of interest have already been labeled with 
bounding boxes. Sometimes this can be done by manually 
adding these annotations to a subset of the satellite images so 
that an algorithm can be built to automate that process.

L E V E L  O F  A G G R E G AT I O N
Next, the level of aggregation in the data set must be con-
sidered. The level of aggregation determines what a single 
row in the data set represents. When considering crop yield, 
there may be yield measurements at a per-farm level (e.g., 
Farm X produces 1,200 tons of maize). It is also common to 
have per-county, per-state, or per-country estimates of crop 
yield. The level of aggregation is considered “fine grained” if 

FIGURE 4. Example of different classes for images. 

Cat Dog Mug Hat

Source: Based on Karpathy, 2017.
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it is at the level of an individual and “coarse grained” if data 
are aggregated into larger units.

It is important to consider the level of aggregation when 
assessing project viability. In most cases, it is impossible to 
create an algorithm that makes accurate predictions at a more 
fine-grained level than that available to train the model. For 
example, if there are only crop yield measurement per state, 
it is not possible to build an algorithm to predict yields per 
county. However, the opposite, aggregating per-state predic-
tions into per-country predictions, is possible. 

Machine-learning models work best when the measure-
ments are fine grained. There are usually more observations 
for fine-grained data. For example, there may be 15 states 
in a country, but there may be thousands of farms in those 
states. Having data per farm means that the algorithm can 
learn from many more examples. This also allows more 
accurate and detailed predictions, such as per specific farm. 
Fine-grained predictions are usually much more useful to 
stakeholders. It is important to note that both images and 
target data will need to be fine grained to fully capture 
their predictive power. For example, if images are at the 
individual farm level but estimates of yield are available 
only at the county level, the model’s ability to predict will 
be weaker than if it were trained using farm level yields for 
each picture. 

TA R G E T  VA R I A B L E S  
F O R  S M A L L H O L D E R  F A R M E R  P R E D I C T I O N S 
Remote sensing is most needed when it is difficult or 
expensive to collect data in other ways, such as for small-
holder farmers, many of whom live in remote areas. There 
are many variables of potential interest about smallholder 
farmers. Some of these variables are explored in the fol-
lowing, particularly those that may be good targets for 
machine-learning projects. 

Economic target variables

•	 Farmer income

•	 Farmer repayment of loan

Agricultural target variables

•	 Farmer crops grown

•	 Crop mix

•	 Crop yield

•	 Soil properties

•	 Irrigation

The quality of these data can vary significantly; data that 
are self-reported (rather than measured directly) are less 
reliable. Some data may need to be collected, while other 
may be available directly from third-party sources, either 
commercially or publicly available. The best machine-
learning insights come from data sources that are objectively 
measured from reliable sources.

FIGURE 5. Example of output from an object recognition algorithm
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For crop yield measurements, a crop-cutting experiment is 
the gold standard. In a crop-cutting experiment, a trained 
enumerator selects a predetermined area from a field to cut 
some of the crop and measure the yield. The measurements 
are then extrapolated for the total area of the field. For more 
information about the crop-cutting procedure, see “Crop 
Cutting Manual” from the Central Statistical Agency, 
Ethiopia, and the World Bank (2013).

3.2	 Farm Location Data (Where)
Location data are needed to segment satellite images into 
areas of interest. Without specific areas of interest, working 
on a large geographic scale may result in very noisy models 
that do not deliver useful predictions. Knowing exactly 
where farms are located is one of the biggest hurdles in 
building models for smallholder farmers. These data are 
often expensive and time-consuming to collect, and their 
accuracy can be hard to verify. There are several ways to 

gather or approximate this data with varying levels of accu-
racy (see Table 1).

Different resolutions are appropriate for different modeling 
tasks. For example, when creating a model to determine 
the crop mix on a certain farm, a reliable model cannot be 
built unless individual farms can be identified. On the other 
hand, when predicting the likelihood of paying out crop 
insurance in a drought, understanding the impact of the 
drought in a larger geographical area may be sufficient.

3.3	 Temporal Data (When)
The next question to ask is, “When were the key measure-
ments taken? Depending on the questions, specific dates 
may even be of interest—for example, did a recent wildfire 
burn a certain field or not? 

There are four basic categories of temporal data: event 
based, seasonal, trend over time, and static. Understanding 

TABLE 1. Location data by resolution

Approx. Spatial 
Resolution

Location Collection 
Mechanism Comments

Most useful < 1m GPS measurement of 
a field perimeter (also 
called GPS polygons)

By far the most effective, but expensive, method of locating 
farmers. A surveyor with a GPS unit (e.g., a smartphone) walks 
the perimeter of each field with the GPS device. This level of detail 
is important for modeling variables that vary at the level of an 
individual field.

Very useful 10–100m A single GPS 
coordinate for fields 
and approximate field 
size

This can be useful, but in practice data quality must be validated. 
For example, surveyors may record the point from a nearby road, 
but fail to note which side of the road the field is located.

Useful 100m–10km Mobile network 
operator provided 
cellular tower pings

Towers have highly variable coverage areas based on power, 
location, obstructions, cell traffic, and other factors. Precision 
can be improved by triangulating the signal among towers of 
overlapping coverage. However, cellular coverage in rural areas is 
often limited. A major hurdle in providing these data is getting the 
cooperation of mobile network operators.

Somewhat useful 1–50km Triangulation based 
on the time it takes 
to walk to 3 known 
locations in opposite 
directions

While easy to collect, e.g., with an SMS survey, it is hard to 
ensure the accuracy of these estimates. Furthermore, surveyed 
individuals cannot always provide locations that can be geocoded 
to a certain latitude/longitude (e.g., through a service like Google 
Maps). Walking times vary based on the individual.

Marginally useful 10–100km A village or market 
name with exact 
geolocation

It is often easier to get the single closest geocodable location. 
However, at this resolution it becomes impossible to pick out 
individual farms. Corresponding statistics must be aggregated to 
a geographic region.

Limited usefulness  > 25km The smallest official 
administrative unit for 
the country 

This is usually the most reliable self-reported area. However, these 
administrative units can vary widely in size, and working with 
individual farms is impossible.
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changes in a target variable over time determines how fre-
quently satellite coverage of an area is needed (see Table 2). 

Exploring crop yield is a seasonal phenomenon based on 
the agricultural cycle, and yields vary year-to-year based on 
agricultural inputs used and weather. To build models that 
take these changes into account and offer robust conclu-
sions, the data set must have enough temporal coverage to 
provide a representative sample of these conditions for the 
region of interest. When modeling farm productivity, data 
should cover several growing seasons, and data should be 
sampled at several points during the growing season. 

3.4	 Volume of Data (How Many)
The volume of data required to build a model depends on 
the task. There are two rules of thumb that can help you 
determine whether a project is feasible.

The first is that classification requires fewer examples than 
regression. It may be the case that the task can be refor-
mulated as a classification problem. Consider crop yield, 
for example, and the goal of providing agricultural support 
for farmers with insufficient yield. If exact historical data 

are not available to calculate expected yield predictions, a 
cut-off can be created that determines whether the yield per 
acre is sufficient or insufficient. Because the goal has been 
reformulated as a classification problem, fewer examples are 
needed to build a reliable model.

The second is that some tasks can achieve higher accuracy 
through “transfer learning.” Using ImageNet results to 
build computer vision models is one example. ImageNet is 
an academic data set that contains hundreds of thousands 
of images of everyday objects (e.g., cats, dogs, cars, balls) 
with the corresponding labels. Research has shown that a 
process of (i) training a model on ImageNet and then (ii) 
retraining just a small portion of the model on a specific 
task can produce highly accurate models. The theory is that 
the ImageNet training learns general features about distin-
guishing objects—for example, recognizing shape boundaries 
or different textures. By making small updates to the model, 
this general ability can quickly achieve good performance 
using a significantly smaller number of samples.

Transfer learning has been documented as effective for 
remote sensing, even using models that were originally 
trained to recognize everyday objects (Penatti, Nogueira, 
and dos Santos 2015). By using transfer learning, researchers 

TABLE 2. Types temporal data

Temporal  
Category Description Examples Considerations

Event-based An event that happens at a discrete 
point in time.

Natural disasters, including 
wildfires, floods, and earthquakes; 
construction of individual 
buildings; opening of new roads 
and bridges.

Imagery must be matched exactly 
to the time window during the 
event to ensure reliable training.

Seasonal A variable that changes seasonally, 
but year-to-year variation is 
relatively low.

Seasonal rains, crop harvests, 
tides, snow cover.

It is important to sample imagery 
during each point in the cycle. 
The year of the imagery does 
not need to match the year of 
measurement.

Trend over time A variable that has a trend over 
time that is not seasonal.

Urban density, soil erosion, 
deforestation.

Effective data sets usually include 
several images over the time 
scale that the quantity changes. 
For example, for urban density, 
images of city edges over several 
years would be relevant.

Static 
(consistent over time)

A quantity that is relatively constant 
over a long period of time (long 
enough that only minor changes 
happen over the course of 
decades—the first images from 
satellites are from 1964).

Geological features, including 
mountains, valleys, grasslands, 
and deserts; paths or large 
bodies of water.

Matching the exact timing of 
the imagery for these kinds 
of quantities is usually not 
necessary.
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often can get accurate results quickly without having to col-
lect enormous amounts of data. As a result, transfer learning 
is recommended for building models for satellite imagery.

While transfer learning substantially reduces the amount 
of data needed, having sufficient data often means having 
thousands or tens of thousands of data points that represent the 
general population. When considering what makes a sample 
representative, there are some general considerations, including 
the following:

•	 Time. The sample should match the period when the target 
variable was measured. For example, satellite images from 
2012, traffic congestion from 2012. It’s important to have 
several years of data for analysis.

•	 Seasonality. Changes over the course of a year often have a 
significant effect on target quantities or image appearances. 
For instance, crops look different during different parts of 
the growing season, so images should be captured during 
different parts of the crop cycle. An exception is if predic-
tions (e.g., crop yield) are to be made at the same time each 
year, in which case the satellite images should be sampled 
from that prediction timeframe (e.g., making predictions 
one month before harvest every season).

•	 Geographic distribution. The training data should 
match the geography where predictions will be made. 
Given agricultural and environmental differences, it can be 
difficult for models to work across geographies, even for the 
same crop.

•	 Scale of operation. The sample should contain examples 
from across the scales of operation that matter. For example, 
models trained on industrial scale farms will not work effec-
tively for smallholder farmers.

The following concerns are more specific to agricultural 
applications:

•	 Crop variety. The kinds of crops (e.g., maize, potatoes) 
that the model is trained on should match the crops that 
the model will need to make predictions for.

•	 Irregular fields. Fields are often irregularly shaped. Using 
training data for large, uniform fields will not generalize 
well to small, irregular fields. 

•	 Intercropping. Smallholder farmers often practice inter-
cropping, where several different crops are grown in a single 
field. Understanding the prevailing intercropping practices 
and incorporating these data into the model (e.g., enabling 

the encoding of percentages of fields or including informa-
tion about common combinations of crops) will result in 
models that more closely reflect realities on the ground.

•	 Differing practices. The sample should contain predomi-
nant agricultural practices in the region of interest. 

•	 Agricultural inputs. There is often variance in the agricul-
tural inputs used by individual farmers and their ability to 
pay for these inputs. For instance, trying to apply models 
trained in higher-income areas to fields in lower-income 
areas may fail to account for the differences in inputs, even 
if the land is similar.

•	 Soil quality. Soil quality can vary across areas, and this can 
have a profound effect on yield. Hence, soil quality should 
be included in the sample where possible.

Generally, a few thousand appropriate images that cover 
the sample of these variables are sufficient to start testing a 
machine-learning model.

3.5	 Satellite Data
There are several important points to consider when 
selecting and using satellite imagery.

•	 Resolution—the number of meters an individual pixel 
captures. Greater resolution means fewer meters per pixel 
and greater detail in the images. Commercial providers 
generally have 5 m to 0.7 m resolution, whereas government 
providers tend to have resolutions of around 30 m. The 
resolution is often different for different spectra. 

•	 Frequency—how often the area of interest is imaged. Some 
providers aim for more frequent, lower resolution coverage. 
Some have areas that are imaged daily, where others get new 
images of an area only a few times per year. Some providers 
have less frequent coverage but high-resolution images.

•	 Coverage area—the surface area of the globe that the 
satellite provider makes available. Not all areas are regularly 
imaged, so it is important to verify that the specific area of 
interest is covered at the desired frequency.

•	 Temporal coverage—images that cover several different 
seasons and samples from throughout growing seasons to 
build agricultural models. Some newer providers may have 
only limited historical imagery.
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•	 Spectra—visible spectrum images include red, green, 
and blue spectra. In addition to the visible color spectra, 
some providers supply grayscale (monochromatic) images 
at higher resolutions. Providers also supply infrared 
spectra—including shortwave infrared and near infrared. 
Infrared can be useful for agricultural applications because 
it can effectively capture chlorophyll content in plants.

•	 Cloud cover—clouds included in satellite images. It is 
important to have strategies for when the area of interest 
is obscured by clouds. This is a common concern when 
working with satellite imagery. Many image providers 
offer the possibility to search by the percentage of cloud 
cover in an image. Having flexibility around exact dates 
and selecting images with low cloud cover can improve 
model accuracy. Additionally, some providers supply “cloud 
masks”—binary labels of every pixel as a cloud or not 
a cloud. This lets users more easily remove clouds from 
images or ignore these pixels in their models.

•	 Paid/Free—some government agencies—for example 
NASA’s LANDSAT, TRMM, and MODIS missions 
and the European Space Agency (ESA)—provide free 
access to satellite data. For example, Sentinel-2, an Earth 
observation mission developed by ESA, provides images 
at 10 m, 20 m, and 60 m resolution at five-day intervals 
and has a free and open data policy. Companies such 
as DigitalGlobe and Planet provide satellite imagery 
commercially, often at a higher resolution or frequency 
than images available for free. 

Assessing these criteria for a specific use case should help 
you choose the satellite imagery provider that fits the needs 
of your project. 
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SECTION 4

THE MODELING

T HIS SECTION DISCUSSES THE ALGO-
rithms and approaches that are most effective for 
machine learning with satellite images. It will 

focus on a class of models referred to as “deep learning.” 
These models are considered the most effective machine-
learning approaches for working with images. Deep learning 
models are based on neural networks, a computational tech-
nique inspired by the human brain. Recent work has shown 

that neural networks outperform other machine-learning 
models in many domains, including speech recognition, 
image classification, and natural language processing 
(Graves, Mohamed, and Hinton 2013; Szegedy et al. 2016; 
Jozefowicz et al. 2016). In particular, CNNs provide a 
way to incorporate both pixel-level information and spatial 
relationships of pixels into flexible functional forms, making 
them well suited for a wide array of tasks. (See Figure 6.)

FIGURE 6. Deep learning models can deal with many types of challenges in imagery
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Moreover, this class of model has been demonstrated to out-
perform traditional methods in remote sensing with satellite 
imagery (Nogueira, Penatti, and dos Santos 2017). CNNs 
are likely to be the dominant model for doing remote 
sensing work in the next 5–10 years, and organizations that 
rely on older techniques stand to fall significantly behind.

A CNN model has several interconnected layers. These 
layers perform different mathematical transformations on 
incoming data (e.g., images). Deciding which operation 
the layers should perform and how the layers are connected 
is an active area of research. These decisions are called the 
model architecture.

Generally, it is a best practice to use an established, pub-
lished model architecture. Researchers continually share and 
publish codes for architectures that achieve state-of-the-art 
results. Using established architectures helps you get results 
faster, and it is unlikely that a novel architecture will pro-
duce significantly better results unless the person building it 
is a deep-learning researcher with a strong track record.

Most of the popular architectures used for satellite imagery 
are based on advances made in the field of computer vision. 
The current research standard for computer vision is the 

6	 Pretrained models are available for many different libraries, for example through the Caffe “Model Zoo” (https://github.com/BVLC/caffe/wiki/Mod-
el-Zoo) or through the keras applications module (https://keras.io/applications/).

7	 This is in contrast to many other machine models where the entire model is trained from scratch for a new application without any initial weights.

ImageNet competition, and architectures that have recently 
performed well on ImageNet are widely available.6 Models 
that have performed well include GoogLeNet, VGG16, 
VGG19, and InceptionV3. These models are available for 
most libraries with pretrained weights—that is, they have 
been primed by being trained on the ImageNet data set.7 
The models can be fine-tuned to a specific use case. Using 
pretrained models has several benefits. They are much faster 
to train because they only need to be fine-tuned and not 
built from scratch. Since training models can take hours or 
days, quicker training time allows for much faster iteration. 
See Figure 7.

What does it mean to fine-tune a CNN architecture? 
Generally, to fine-tune a CNN, you keep the existing 
architecture and the existing weights, which were generated 
based on training from millions of images. You keep the 
weights that are connected with interim features that you 
care about, such as edges and textures, and you update the 
part of the model that translates these features into useful 
patterns for addressing the specific use case, such as crop 
mix or yield. To do this, you remove the topmost layer of 
the CNN architecture, which yields the general outputs 
of ImageNet (e.g., cats, dogs, hats, etc.), and replace it 

FIGURE 7. �Fine-tuning models (also known as transfer learning) updates an existing model for a new task
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with one that yields as outputs the target variable you are 
interested in. The values, or weights, in the first part of 
the model are frozen, leaving some portion of the model 
“unfrozen” and able to update given the new data you 
provide. Finally, the model if fine-tuned by executing the 
training procedure, updating the weights in the unfrozen 
layers, and training them to produce the output you are 
interested in. 

There are a few downsides to using a pretrained model. 
First, the architecture was not specifically designed for 
the use case in question. There may be instances where 
changing the architecture will improve the performance of 
the model; however, when starting from scratch, it is much 
more cost effective to use established architectures. Second, 
depending on the library and implementation, the input 
format for the model may be limited. Since the models are 
pretrained on ImageNet, they may accept only images that 
are 299 x 299 pixels and contain three color channels. This 
means that some information may have to be discarded 
by resizing the satellite data and removing spectra outside 
of the three colors. Third, choosing a model can limit the 
programming language and deep learning library choices to 
ones in which that model is available. 

4.1	 �IT Infrastructure  
for Machine Learning

Machine learning is a computationally expensive process, 
and deep learning involves computing a huge number of 
parameters over a massive amount of data. Any discussion 
of deep learning is thus incomplete without a discussion of 
the hardware used to train the models.

The first order of concern for infrastructure is the scale of 
the data. Satellite imagery—especially from commercial 
providers—can quickly take up terabytes of storage. The 
space to store and the power to compute over this scale of 
data are expensive to set up and manage. As a result, orga-
nizations that do not have dedicated computational servers 
should use cloud resources. Providers such as Amazon 
Web Services, Google Cloud Engine, and Microsoft Azure 
provide hardware, virtual machines, and storage capable 
of scaling to the needs of a satellite imagery project. If you 
are using a commercial imagery provider, that provider 
may recommend a specific cloud platform—there are cost 
savings when a user’s computation and storage is co-located 
with that of the imagery provider. It is cheaper and faster to 
transfer data from the imagery provider to your resources.

Cloud providers also use virtual machines with access 
to Graphics Processing Units (GPUs). GPUs are highly 
efficient at doing massive matrix calculations, a core com-
putation for deep learning. Using GPU machines to train 
deep-learning models will significantly reduce the time 
required for training.

While cloud computing providers have significantly reduced 
the cost and expertise required to store and process large 
amounts of data, accessing and storing the images is still 
a significant technical undertaking. It can take a week or 
more to create, provision, and set up the resources required 
to host the images for the model to assess. This time and 
effort should be included in the requirements for resources. 
It would be nearly impossible for data scientists do this work 
on an individual laptop.
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SECTION 5

8	  A tile is a single image from the satellite provider.

CASE STUDY

T HIS SECTION APPLIES THE RECOM-
mendations in this guide to a sample case and 
covers a project in which deep-learning models 

were trained to predict crop yield in Kenya. 

5.1	 Overview
FarmDrive is a microcredit provider for smallholder farmers. 
In collaboration with DrivenData, Impact Lab, and CGAP, 
FarmDrive explored the use of satellite imagery to augment its 
data collection and analytics for evaluating loans to smallholder 
farmers in Kenya. The goal of the project was to determine 
whether information derived from satellite data could be used 
as predictors of risk factors such as crop yield and income.

5.2	 Geospatial Data
The first step was to evaluate data sources that could be 
used to predict crop yields (and thus, farmer income). Since 
FarmDrive did not have enough direct data from its farmers 
to estimate either crop yield or income, additional data sources 
were needed. The goal was to find a target variable data set 
from which to build predictive models. Crop yield data are 
often aggregated for geographic regions and were most readily 
available at the regional level for Kenya. However, because 
there are only 47 Kenyan regions, there were too few regions 
from which to build complex models of suitable geographic 
resolution. Smoothed models for crop yield from academic 
research were used instead of these government estimates.

Data provider Harvest Choice had the most relevant tem-
poral and geographic coverage for its estimates. The model 
for producing these estimates is called the Spatial Production 
Allocation Model, and it produces estimates at a resolution 

of approximately 10 km x 10 km (Harvest Choice 2015). 
Estimates for the three most common crops from a survey of 
FarmDrive’s farmers were used: maize, beans, and potatoes.

5.3	 Satellite Modeling
The next step was to acquire the satellite imagery that 
corresponded with the ground truth. This was sourced from 
Planet, a commercial provider of satellite imagery.

I M A G E  D ATA
The scale of satellite image data for an area the size of 
Kenya made this a true “big data” project that required a 
cloud-based pipeline for working with the satellite data. 
Server instances were co-located with the satellite imagery 
data using Amazon Web Services, and a pipeline in Python 
software was created to identify the imagery “tiles” that 
intersected the area of interest for a given time frame and to 
activate and download these images to local storage.8

Images were downloaded based on several dimensions: 

•	 Timeframe—against predefined seasons. 

•	 Area of interest—all of Kenya, wards in Kenya, and 
defined areas. 

•	 Cloud cover—tiles were limited to those with less than 
5 percent cloud cover.

•	 Asset type—testing both “visual” and “analytic” assets.

The tiles were assembled into images that aligned geographi-
cally with the training data set by merging the tiles into a single 
image. The colors of these merged images were adjusted so 
that differences in color balances did not affect the machine-
learning algorithms. Figure 8 illustrates this concept. As a 
result, these images matched the areas of interest and linked 
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directly to estimates of crop yields from the Harvest Choice 
data. Overall, almost 5 terabytes of satellite data passed 
through the cloud-based data processing pipeline. 

M O D E L I N G
Several CNN models were trained to test combinations of 
different modeling decisions, in particular:

•	 Crops: maize, beans, and potatoes

•	 Seasons: summer and fall (the seasons for which there was 
sufficient imagery coverage)

•	 Asset type: both visual and analytic assets 

•	 Model architectures: two state-of-the-art computer vision 
architectures with different levels of model complexity: 
InceptionV3 and VGG 16 (Szegedy et al. 2015; Simonyan 
and Zisserman 2015)

These models were trained on GPUs that are optimized for 
tasks such as image processing. 

To evaluate the results, the “error rate” was studied as the 
models were trained. The training error measures how well the 
model performs on examples it has been trained on (in-sample) 
while the validation error measures how well the model per-
forms on examples it has not been trained on (out of sample). 
In Figure 9, the model improves if the green line (validation 
error) continuously decreases with the blue line (training error). 
Since the objective is to use the model to predict new cases, for 
which the target value is not known, the reduction in valida-
tion error is what makes the model effective.

5.4	 Results
More complex architectures (InceptionV3) and crops that have 
larger plants (maize) produced the most accurate models.

Overall, 24 different models were tested with varying degrees 
of success. The best performing model used the InceptionV3 
architecture and red, green, and blue channels (visual assets) to 
predict maize yield using imagery gathered in summer 2016.

5.5	 Limitations
This case study demonstrates both the power of the methods 
used and their limitations. The challenges that arose pointed 
to areas where investments are needed to make these methods 
viable at scale. These include the following:

•	 Aggregated estimates of yield at relatively large areas were 
used and are inappropriate for assessing the yield of individ-
ual farms that usually cover a much smaller area. 

•	 The ground truth yield data was disjointed temporally from 
the satellite imagery. The crop yield estimates were over 10 
years old (2005) compared with the imagery (2016). 

•	 There were computational constraints. Even with cloud 
computing resources, the images were significantly scaled 
down from the native resolution provided by the imagery 
provider. This enabled a large number of models to be 
assessed on lower-cost machines. Using more expensive 
and sophisticated hardware and having a longer timeframe 
for the work would allow models to be trained at increased 
resolution to produce better predictions.

FIGURE 8. �Merged images often have different color balances. Using a histogram-matching algorithm, input 
(left) looks more consistent (right).
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5.6	 Lessons Learned
This use case demonstrated that CNN modeling could be 
used to quickly converge on increasingly accurate models 
for predicting crop yields for very different types of crops 
in a real-life environment. Histogram matching algorithms 
were successful in eliminating much of the variation in 
color balance from satellite imagery of the fields. Despite the 
limitations encountered, the satellite model shows promise 
and helped to indicate where FarmDrive should invest in 
more resources to build systems to better serve smallholder 
farmers. Ideally, the models would be built using objectively 
measured yield for target fields and a geographic shapefile 
that outlines the bounds of the field in question. These two 
pieces of data collected at sufficient scale (say 10,000 exam-
ples) would allow the models to be much more effective. 

FIGURE 9. �Training passes for InceptionV3,  
summer, visual asset models.
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23APP   E ND I X

A PPENDIX. USING SATELLITE 
IM AGERY FOR FIN A NCI A L 
INCLUSION: A CHECK LIST

S ATELLITE IMAGERY COMBINED WITH 
machine learning can be a powerful tool for 
improving financial and supply chain services to 

smallholder farmers. This guide shares a structure and the 
decisions that need to be made when using these tools. 

As you begin your journey using satellite imagery, use 
this checklist to put together your plan. Not all items are 
required, but you should have a reason why they don’t 
apply to your project. This checklist can help you put your 
organization on the path to success using state-of-the-art 
technology to help smallholder farmers.

Capacity
I N T E R N A L  (O R  C O N T R A C T E D)  C A PA C I T Y

 	Data scientist

	 GIS specialist

	 Data engineer

	 Project coordinator

	 Project champion

O U T S O U R C E D  C A PA C I T Y
	 Firm with deep learning experience

	 Firm with GIS experience

Shared Vision
	 Agreed scope

	 Clear definition of success

Data
TA R G E T  VA R I A B L E

	 What is your target variable?

	 What is the source of these data?

	 How often are data collected?  
When was the sample collected?

	 What is the geographic range of the data?

	 What is the level of aggregation of the data?

	 What is the total number of examples you have?

S AT E L L I T E  I M A G E R Y
Choose a provider that best fits the following:

 	Coverage area of the data

 	Time period that matches your data

 	Best resolution available

 	Additional spectra, if applicable

 	Suitable price for your budget
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Model and Infrastructure
M O D E L I N G  D E C I S I O N S

	 Select a programming language

	 Select a deep learning library that has the models  
you will use

	 Decide whether you will be using predefined architectures

	 Decide whether you will be using pretrained models

	 Decide how you will preprocess satellite imagery, including 
mosaicing, color balance, cropping, and cloud cover

I N F R A S T R U C T U R E
	 Cloud resources for storage

	 Clouded resources for computing, specifically GPU machines

	 Plan for managing cloud resources

	 Budget for setting up and maintaining cloud resources

R E S U LT S  E VA L U AT I O N
	 Do you have enough data for a holdout validation set?

	 What is your definition of success?

	 Be willing to learn from what doesn’t work and iterate
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